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Abstract

An important class of problems exhibits smooth behaviour on macroscopic space and time scales, while only a
microscopic evolution law is known. For such time-dependent multi-scale problems, an ‘‘equation-free’’ framework
has been proposed, of which patch dynamics is an essential component. Patch dynamics is designed to perform numer-
ical simulations of an unavailable macroscopic equation on macroscopic time and length scales; it uses appropriately
initialized simulations of the available microscopic model in a number of small boxes (patches), which cover only a frac-
tion of the space-time domain. We show that it is possible to use arbitrary boundary conditions for these patches, pro-
vided that suitably large buffer regions ‘‘shield’’ the boundary artefacts from the interior of the patches. We analyze the
accuracy of this scheme for a diffusion homogenization problem with periodic heterogeneity and illustrate the approach
with a set of numerical examples, which include a non-linear reaction–diffusion equation and the Kuramoto–Sivashin-
sky equation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For an important class of multi-scale problems, a separation of scales prevails between the (microscopic,
detailed) level of description of the available model, and the (macroscopic, continuum) level at which one
would like to observe and analyze the system. Consider, for example, a kinetic Monte-Carlo model of bac-
terial growth [37]. A stochastic model describes the probability of an individual bacterium to run or ‘‘tum-
ble’’, based on the rotation of its flagellae. Technically, it would be possible to simply evolve the detailed
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model and observe the macroscopic variables of interest (e.g. cell density), but this could be prohibitively
expensive. It is known, however, that, under certain conditions, one could write a deterministic equation for
the evolution of the macroscopic observable (here bacteria concentration, the zeroth moment of the evolving
distribution) on macroscopic space and time scales, but it is hard to obtain an accurate closed formula
explicitly.

The recently proposed equation-free framework [25] can then be used instead of stochastic time integra-
tion in the entire space-time domain. This framework is built around the central idea of a coarse time-step-

per, which is a time-dt map from coarse variables to coarse variables. It consists of the following steps: (1)
lifting, i.e., the creation of appropriate initial conditions for the microscopic model; (2) evolution, using the
microscopic model and (possibly) some constraints; and (3) restriction, i.e., the projection of the detailed
solution to the macroscopic observation variables. This coarse time-stepper can subsequently be used as
‘‘input’’ for time-stepper based algorithms performing macroscopic numerical analysis tasks. These include,
for example, time-stepper based bifurcation codes to perform bifurcation analysis for the unavailable mac-
roscopic equation [29,30,41,42]. This approach has already been used in several applications [21,39], and
also allows to perform other system level tasks, such as control and optimization [38].

When dealing with systems that would be described by (in our case, unavailable) partial differential
equations (PDEs), one can also reduce the spatial complexity. For systems with one space dimension,
the gap-tooth scheme [25] was proposed; it can be generalized in several space dimensions. A number of
small intervals, separated by large gaps, are introduced; they qualitatively correspond to mesh points for
a traditional, continuum solution of the unavailable equation. In higher space dimensions, these intervals
would become boxes around the coarse mesh points, a term that we will also use throughout this paper. We
construct a coarse time-dt map as follows. We first choose a number of macroscopic grid points. Then, we
choose a small interval around each grid point; initialize the fine scale, microscopic solver within each inter-
val consistently with the macroscopic initial condition profiles; and provide each box with appropriate
boundary conditions. Subsequently, we use the microscopic model in each interval to simulate until time
dt, and obtain macroscopic information (e.g. by computing the average density in each box) at time dt. This
amounts to a coarse time-dt map; the procedure is then repeated. The resulting scheme has already been
used with lattice–Boltzmann simulations of the Fitzhugh–Nagumo dynamics [24,25] and with particle-
based simulations of the viscous Burgers equation [15].

To increase the efficiency of time integration, one can use the gap-tooth scheme in conjunction with any
method-of-lines time integration method, such as projective integration [13]. We then perform a number of
gap-tooth steps of size dt to obtain an estimate of the time derivative of the unavailable macroscopic equa-
tion. This estimate is subsequently used to perform a time step of size Dt � dt. This combination has been
termed patch dynamics [25].

In our recent work, we have studied the gap-tooth scheme for a diffusion homogenization problem,
which is considered as a model problem. In this case, the microscopic equation is a diffusion equation with
a spatially periodic diffusion coefficient with small spatial period �, while the macroscopic (effective) equa-
tion describes the averaged behaviour. In the limit of � going to zero, this effective equation is the classical
homogenized equation. Our goal is to approximate the effective equation by using only the microscopic
equation in a set of small boxes. In [35], we showed that the gap-tooth scheme approximates a finite differ-
ence scheme for the homogenized equation, when the averaged gradient is constrained at the box bound-
aries to reflect the diffusive macroscopic behaviour.

In general, a given microscopic code only allows us to run with a set of predefined boundary conditions.
It is highly non-trivial to impose macroscopically inspired boundary conditions on such microscopic codes,
see, e.g. [28] for a control-based strategy. We circumvent this problem here by introducing buffer regions at
the boundary of each small box, which shield the short-term dynamics within the computational domain of
interest from boundary effects. One then uses the microscopic code with its built-in boundary conditions.
This paper is devoted to the study of the resulting patch dynamics scheme with buffers, which was already



266 G. Samaey et al. / Journal of Computational Physics 213 (2006) 264–287
introduced in [34,35]. We will show that the scheme converges for the diffusion homogenization problem
when Dirichlet boundary conditions are used (which clearly do not reflect the correct macroscopic behav-
iour). We illustrate numerically that the convergence also holds for other boundary conditions, e.g. of
no-flux type, and we analyze the relation between buffer size, time step and accuracy. The analysis in this
context is important, because we can clearly show the influence of the microscopic scales on the accuracy of
the solution for this model problem. However, we emphasize that the real advantage of the method lies in
its applicability for non-PDE microscopic simulators, e.g. kinetic Monte-Carlo or molecular dynamics.

We note that many numerical schemes have been devised for the homogenization problem, with the ear-
liest work dating back to Babuska [3] for elliptic problems and Engquist [11] for dynamic problems. With-
out the aim of being complete, we mention some recent multi-scale approaches to the homogenization
problem. The multi-scale finite element method of Hou and Wu [19,20] uses special basis functions to cap-
ture the correct microscopic behaviour. Schwab, Matache and Babuska [31,36] have devised a generalized
FEM method based on a two-scale finite element space. Other approaches include the use of wavelet pro-
jections [8,12] and multi-grid cycles [32]. Runborg et al. [33] proposed a time-stepper based method that
obtains the effective behaviour through short bursts of detailed simulations appropriately averaged over
many shifted initial conditions. The simulations were performed over the whole domain, but the notion
of effective behaviour is identical. In their recent work, E and Engquist and collaborators address the same
problem of simulating only the macroscopic behaviour of a multi-scale model, see, e.g. [1,9]. In what they
call the heterogeneous multi-scale method, a macro-scale solver is combined with an estimator for quanti-
ties that are unknown because the macroscopic equation is not available. This estimator subsequently uses
appropriately constrained runs of the microscopic model [9]. It should be clear that the patch dynamics
scheme, as introduced in [25], is constructed according to exactly the same principle: by taking a few
gap-tooth steps, we estimate the time derivative of the unknown effective equation, and give this as input
to an ODE solver, such as projective integration. The difference in their work is that, for conservation laws,
the macro-field time derivative is estimated from the flux of the conserved quantity; their generalized Godu-
nov scheme is based on this principle.

This paper is organized as follows. In Section 2, we describe the model homogenization problem. In Sec-
tion 3, we describe the gap-tooth scheme to approximate the time derivative of the unavailable macro-
scopic equation. We prove a consistency result and propose a simple heuristic to obtain a sufficient
buffer size. We also discuss to what extent the results depend on the specific setting of our model problem.
In Section 4, we describe the full patch dynamics algorithm and give some comments on stability. Section 5
contains some numerical examples which illustrate the accuracy and efficiency of the proposed method,
and we conclude in Section 6.
2. The homogenization problem

As a model problem, we consider the following parabolic partial differential equation:
otu�ðx; tÞ ¼ oxðaðx=�Þoxu�ðx; tÞÞ in ½0; T Þ � ½0; 1�;
u�ðx; 0Þ ¼ u0ðxÞ 2 L2ð½0; 1�Þ; u�ð0; tÞ ¼ u�ð1; tÞ ¼ 0; ð1Þ
where a(y) = a(x/�) is uniformly elliptic and periodic in y and � is a small parameter. We choose homoge-
neous Dirichlet boundary conditions for simplicity.

According to classical homogenization theory [6], the solution to (1) can be written as an asymptotic
expansion in �,
u�ðx; tÞ ¼ u0ðx; tÞ þ
X1
i¼1

�iðuiðx; x=�; tÞÞ; ð2Þ
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where the functions ui(x,y,t) ” ui(x,x/�,t), i = 1, 2, . . . are periodic in y. Here, u0(x,t) is the solution of the
homogenized equation
otu0ðx; tÞ ¼ oxða�oxu0ðx; tÞÞ in ½0; T Þ � ½0; 1�; u0ðx; 0Þ ¼ u0ðxÞ 2 L2ð½0; 1�Þ; u0ð0; tÞ ¼ u0ð1; tÞ ¼ 0;

ð3Þ

the coefficient a* is the constant effective coefficient, given by
a� ¼
Z 1

0

aðyÞ 1� d

dy
vðyÞ

� �
dy ð4Þ
and v(y) is the periodic solution of
d

dy
aðyÞ d

dy
vðyÞ

� �
¼ d

dy
aðyÞ; ð5Þ
the so-called cell problem. The solution of (5) is only defined up to an additive constant, so we impose the
extra condition
Z 1

0

vðyÞdy ¼ 0.
From this cell problem, we can derive u1(x,y,t) = oxu0v(y). We note that in one space dimension, an explicit
formula is known for a* [6]
a� ¼
Z 1

0

1

aðyÞ dy
� ��1

. ð6Þ
These asymptotic expansions have been rigorously justified in the classical book [6], see also [7]. Under the
assumptions made on a(x/�), one obtains strong convergence of u�(x,t) to u0(x,t) as �! 0 in
L2([0,1]) · C([0,T)). Indeed, we can write
ku�ðx; tÞ � u0ðx; tÞkL2ð½0;1�Þ 6 C0� ð7Þ
uniformly in t.
It is important to note that the gradient of u(x,t) is given by
oxu�ðx; tÞ ¼ oxu0ðx; tÞ þ oyu1ðx; y; tÞ þOð�Þ; ð8Þ

from which it is clear that the micro-scale fluctuations have a strong effect on the local detailed gradient.

Using the gap-tooth scheme, we will approximate the homogenized solution u0(x,t) by a local spatial
average, defined as
Uðx; tÞ ¼ Shðu�Þðx; tÞ ¼
1

h

Z xþh=2

x�h=2
u�ðn; tÞdn.
It can easily be seen that that U(x,t) is a good approximation to u0(x,t) in the following sense.

Lemma 1. Consider u�(x,t) to be the solution of (1), and u0(x,t) to be the solution of the associated homo-

genized equation (3). Then, assuming
h ¼ Oð�pÞ; p 2 ð0; 1Þ; ð9Þ
the difference between the homogenized solution u0(x,t) and the averaged solution U(x,t) is bounded by
kUðx; tÞ � u0ðx; tÞkL1ð½0;1�Þ 6 C1h
2 þ C2

�

h
. ð10Þ
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For a proof, we refer to [35, Lemma 3.1]. Note that this error bound can be improved if we have more
knowledge about the convergence of u� to u0 (e.g. in L1([0,1])).
3. Estimation of the time derivative

We devise a scheme for the evolution of the averaged behaviour U(x,t), while making only use of the
given detailed equation (1). Moreover, we assume that a time integration code for (1) has already been writ-
ten and is available with a number of standard boundary conditions, such as no-flux or Dirichlet. We also
assume that the order d of the unavailable macroscopic equation (the highest spatial derivative) is known. A
strategy to obtain this information is given in [27]. So, we know that the macroscopic equation is of the
form
otU ¼ F ðU ; oxU ; . . . ; odxU ; tÞ; ð11Þ

where ot denotes the time derivative and o

k
x denotes the kth spatial derivative.

We first describe the gap-tooth scheme with buffers. We discuss the construction of the initial condition
and the imposition of arbitrary boundary conditions using buffer regions. Subsequently, we show that this
scheme converges for the model problem in the limit of growing buffer sizes, when Dirichlet boundary con-
ditions are chosen. We conclude this section with a heuristic for the selection of the buffer size and some
general comments.

3.1. The gap-tooth scheme with buffers

Suppose we want to obtain the solution of (11) on the interval [0,1], using an equidistant, macroscopic
mesh P(Dx) := {0 = x0 < x1 = x0 + Dx < � � � < xN = 1}. For convenience, we define a macroscopic com-
parison scheme, which is a space-time discretization for (11) in the assumption that this equation is known.
We will denote the numerical solution of this scheme by Un

i � Uðxi; tnÞ. Here, we choose as a comparison
scheme a forward Euler/spatial finite difference scheme, which is defined by
Unþd ¼ SðUn; tn; dtÞ ¼ Un þ dtF ðUn;D1ðUnÞ; . . . ;DdðUnÞ; tnÞ; ð12Þ

where Dk(Un) denotes a suitable finite difference approximation for the kth spatial derivative.

Since Eq. (11) is not known explicitly, we construct a gap-tooth scheme to approximate the comparison
scheme (12). We denote the solution of the gap-tooth scheme by �Un

i � Un
i . The gap-tooth scheme is now

constructed as follows. Consider a small interval (box, tooth) of length h around each mesh point, as well
as a larger buffer interval of sizeH > h (see Fig. 1). We will perform a time integration using the microscopic
model (1) in each box of size H, and we provide this simulation with the following initial and boundary
conditions.

3.1.1. Initial condition

We define the initial condition by constructing a local Taylor expansion, based on the (given) box aver-
ages �Un

i ; i ¼ 0; . . . ;N , at mesh point xi and time tn,
�uiðx; tnÞ ¼
Xd
k¼0

Dk
i ð �U

nÞ ðx� xiÞk

k!
; x 2 xi �

H
2
; xi þ

H
2

� �
; ð13Þ
where d is the order of the macroscopic equation (11). The coefficients Dk
i ð �U

nÞ; k > 0 are the same finite
difference approximations for the kth spatial derivative that would be used in the comparison scheme
(12), whereas D0

i ð �U
nÞ is chosen such that



Fig. 1. A schematic representation of the gap-tooth scheme with buffer boxes. We choose a number of boxes of size h around each
macroscopic mesh point xi and define a local Taylor approximation as initial condition in each box. Simulation is performed inside the
larger (buffer) boxes of size H, where some boundary conditions are imposed.
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1

h

Z xiþh=2

xi�h=2
�uiðn; tnÞdn ¼ �Un

i . ð14Þ
For example, when d = 2, and using standard (second-order) central differences we have
D2
i ð �U

nÞ ¼
�Un

iþ1 � 2 �Un
i þ �Un

i�1

Dx2
; D1

i ð �U
nÞ ¼

�Un
iþ1 � �Un

i�1

Dx
; D0

i ð �U
nÞ ¼ �Un

i �
h2

24
D2

i ð �U
nÞ. ð15Þ
The resulting initial condition was used in [35], where it was derived as an interpolating polynomial for
the box averages.

3.1.2. Boundary conditions

The time integration of the microscopic model in each box should provide information on the evolution
of the global problem at that location in space. It is therefore crucial that the boundary conditions are cho-
sen such that the solution inside each box evolves as if it were embedded in the larger domain. We already
mentioned that, in many cases, it is not possible or convenient to impose macroscopically inspired con-
straints on the microscopic model (e.g. as boundary conditions). However, we can introduce a larger
box of size H > h around each macroscopic mesh point, but still only use (for macro-purposes) the evolu-
tion over the smaller, inner box. The simulation can subsequently be performed using any of the built-in

boundary conditions of the microscopic code. Lifting and (short-term) evolution (using arbitrary available
boundary conditions) are performed in the larger box; yet the restriction is done by processing the solution
(here taking its average) over the inner, small box only. The goal of the additional computational domains,
the buffers, is to buffer the solution inside the small box from the artificial disturbance caused by the (repeat-
edly updated) boundary conditions. This can be accomplished over short enough time intervals, provided
the buffers are large enough; analyzing the method is tantamount to making these statements quantitative.

The idea of a buffer region was also introduced in the multi-scale finite element method of Hou (over-
sampling) [19] to eliminate boundary layer effects; also Hadjiconstantinou makes use of overlap regions to
couple a particle method with a continuum code [17]. To avoid confusion, we remark that the introduction
of a buffer region in these methods implies that parts of the macroscopic domain are covered more than
once, which is an important difference with respect to the method presented here. If the microscopic code
allows a choice of different types of microscopic boundary conditions, selecting the size of the buffer may
also depend on this choice.
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3.1.3. The algorithm

The complete gap-tooth algorithm to proceed from tn to tn + dt is given below:

(1) Lifting At time tn, construct the initial condition �uiðx; tnÞ; i ¼ 0; . . . ;N using the box averages �Un
i , as

defined in (13).
(2) Simulation Compute the box solution �uiðx; tÞ; t > tn, by solving Eq. (1) in the interval [xi �

H/2,xi + H/2] with some boundary conditions up to time tn+ d = tn + dt. The boundary conditions
can be anything that the microscopic code allows.

(3) Restriction Compute the average �Unþd
i ¼ 1=h

R xiþh=2
xi�h=2 �u

iðn; tnþdÞdn over the inner, small box only.

It is clear that this procedure amounts to a map of the macroscopic variables �Un
at time tn to the mac-

roscopic variables at time tn+ d, i.e., a ‘‘coarse to coarse’’ time dt-map. We write this map as follows:
�Unþd ¼ �S
dð �Un

; tn; dt;HÞ ¼ �Un þ dt�F dð �Un
; tn; dt;HÞ; ð16Þ
where we introduced the time derivative estimator
�F dð �Un
; tn; dt;HÞ ¼

�Unþd � �Un

dt
. ð17Þ
The superscript d denotes the highest spatial derivative that appears in Eq. (11) and has been prescribed
by the initialization scheme (13). The accuracy of this estimate depends on the buffer size H, the box size
h and the time step dt.

3.2. Consistency

To analyze convergence, we solve the detailed problem approximately in each box. Because h � �, we
can resort to the homogenized solution, and bound the error using Eq. (7). It is important to note that
we use the homogenized equation for analysis purposes only. The algorithm uses box averages of solutions
of the detailed problem (1), so it uses only the order d of the homogenized equation, which is required to
perform a consistent lifting. We choose to study convergence in the concrete case of Dirichlet boundary
conditions, which are guaranteed to introduce boundary artefacts. We will show that these artefacts can
be made arbitrarily small by increasing the size of the buffer H. We will show numerically that the results
do not depend crucially on the type of boundary conditions.

We first relate the gap-tooth time-stepper as constructed in Section 3.1 to a gap-tooth time-stepper in
which the microscopic equation has been replaced by the homogenized equation.

Lemma 2. Consider the model equation
otu�ðx; tÞ ¼ oxðaðx=�Þoxu�ðx; tÞÞ; ð18Þ

where a(y) = a(x/�) is periodic in y and �� 1, with initial condition u�(x,0) = u0(x) and Dirichlet boundary

conditions
u�ð�H=2; tÞ ¼ u0ð�H=2Þ; u�ðH=2; tÞ ¼ u0ðH=2Þ. ð19Þ

For �! 0, this problem converges to the homogenized problem
otu0ðx; tÞ ¼ oxða�oxu0ðx; tÞÞ ð20Þ

with initial condition u0(x,0) = u0(x) and Dirichlet boundary conditions
u0ð�H=2; tÞ ¼ u0ð�H=2Þ; u0ðH=2; tÞ ¼ u0ðH=2Þ ð21Þ

and the solution of (18) and (19) converges to the solution of (20) and (21), with the following error estimate
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ku�ðx; tÞ � u0ðx; tÞkL2ð½�H=2;H=2�Þ 6 C3�. ð22Þ

This is a standard result, whose proof can be found in e.g. [2,7].

We now define two gap-tooth time-steppers. Let
�Unþd ¼ �S
2ð �Un

; tn; dt;HÞ ¼ �Un þ dt�F 2ð �Un
; tn; dt;HÞ ð23Þ
be a gap-tooth time-stepper that uses the detailed, homogenization problem (18) and (19) inside each box,
and
Û
nþd ¼ Ŝ

2ðÛ n
; tn; dt;HÞ ¼ Û

n þ dtF̂
2ðÛn

; tn; dt;HÞ ð24Þ

be a gap-tooth time-stepper where the homogenization problem for each box has been replaced by the
homogenized equations (20) and (21). The box initialization is done using a quadratic polynomial as de-
fined in (15).

We can apply [35, Lemma 4.2] to bound the difference between �F 2ð �U ; tn; dt;HÞ and F̂
2ðÛ ; tn; dt;HÞ.

Lemma 3. Consider �Unþd ¼ �S2ð �Un
; tn; dt;HÞ and Û

nþd ¼ Ŝ
2ðÛn

; tn; dt;HÞ as defined in (23) and (24), respec-
tively. Assuming �Un ¼ Û

n
, h ¼ Oð�pÞ; p 2 ð0; 1Þ; � ! 0, we have
k �Unþd
i � Û

nþd

i k 6 C4

�ffiffiffi
h

p

and therefore
�F 2ð �Un
; tn; dt;HÞ � F̂

2ðÛn
; tn; dt;HÞ

��� ��� 6 C4
�ffiffiffi
h

p
dt
.

Again, note that the error estimate can be made sharper if additional knowledge of the convergence of u�
to u0 is available.

It can easily be checked that the averaged solution U(x,t) also satisfies the diffusion equation (20) for any
h in the limit of � ! 0. Therefore, we define the comparison scheme (12) for the model problem as
Unþd ¼ SðUn; tn; dtÞ ¼ Un þ dtF ðUn;D1ðUnÞ;D2ðUnÞ; tnÞ ¼ Un þ dt½a�D2ðUnÞ�. ð25Þ
We compare the gap-tooth time derivative estimator F̂
2ðÛ ; tn; dt;HÞ with the finite difference time deriv-

ative used in (25).

Theorem 4. Consider the gap-tooth time-stepper for the homogenized equation, as defined by (24), and the

corresponding comparison scheme (25). Assuming Un ¼ Û
n
, and defining the error
Eðdt;HÞ ¼ kF̂ 2ðÛ n
; tn; dt;HÞ � a�D2ðUnÞk;
we have the following result for dt/H2 ! 0, h � H:
Eðdt;HÞ 6 C1 þ C2

h2

dt

� �
1� exp �a�p2 dt

H 2

� �� �
. ð26Þ
Proof. First, we solve Eqs. (20) and (21) analytically inside each box, with initial condition given by (13).
Using the technique of separation of variables, we obtain
ûiðx; tÞ ¼ Û
n

i �
h2

24
D2

i ðÛ
nÞ þ D2

i ðÛ
nÞH

2

8
þ D1

i ðÛ
nÞðx� xiÞ

þ
X1
m¼1

aim exp �a�
m2p2

H 2
ðt � tnÞ

� �
sin

mp
H

x� xi �
H
2

� �� �
;
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where
aim ¼ 2

H

Z xiþH=2

xi�H=2

1

2
D2

i ðÛ
nÞ ðx� xiÞ2 �

H 2

4

� �
sin

mp
H

x� xi �
H
2

� �� �
dx.
This can be simplified to
aim ¼ � 2H 2D2
i ðÛ

nÞðð�1Þm � 1Þ
m3p3

;

which yields the following solution:
ûiðx; tÞ ¼ Û
n

i �
h2

24
D2

i ðÛ
nÞ þ D2

i ðÛ
nÞH

2

8
þ D1

i ðÛ
nÞðx� xiÞ þ

X1
m¼1

4H 2D2
i ðÛ

nÞ
ð2m� 1Þ3p3

� exp �a�
ð2m� 1Þ2p2

H 2
ðt � tnÞ

 !
sin

ð2m� 1Þp
H

x� xi �
H
2

� �� �
. ð27Þ
When taking the average over a box of size h, we obtain,
1

h

Z xiþh=2

xi�h=2
ûiðx; tÞdx ¼ Û

n

i �
h2

24
D2

i ðÛ
nÞ þ D2

i ðÛ
nÞH

2

8
þ
X1
m¼1

4H 2am
ð2m� 1Þ3p3

D2
i ðÛ

nÞ

� exp �a�
ð2m� 1Þ2p2

H 2
ðt � tnÞ

 !
; ð28Þ
with am determined by
am ¼ 1

h

Z xi�h=2

xi�h=2
sin

ð2m� 1Þp
H

x� xi �
H
2

� �� �
dx

¼ H
ð2m� 1Þhp cos

ð2m� 1Þp
2H

ðH þ hÞ
� �

� cos
ð2m� 1Þp

2H
ðH � hÞ

� �� �

¼ ð�1Þm 2H
ð2m� 1Þhp sin

ð2m� 1Þp
2H

h
� �

.

The coefficients am tend to 1 in absolute value as h ! 0. To obtain the time derivative estimate
F̂

2

i ðÛ
n
; tn; dt;HÞ, we proceed as follows:
F̂
2

i ðÛ
n
; tn; dt;HÞ ¼ 1

dt h

Z xiþh=2

xi�h=2
ûiðx; tn þ dtÞ � ûiðx; tnÞdx

¼ 1

dt

X1
m¼1

4H 2amD2
i ðÛ

nÞ
ð2m� 1Þ3p3

exp �a�
ð2m� 1Þ2p2

H 2
dt

 !
� 1

 !

¼ 4D2
i ðÛ

nÞ 1
n

X1
m¼1

amðexpð�a�ð2m� 1Þ2p2nÞ � 1Þ
ð2m� 1Þ3p3

 !
;

where we introduced n = dt/H2. Using the infinite sum
X1
m¼1

ð�1Þmþ1

ð2m� 1Þ ¼
p
4
;
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it can easily be checked that
lim
n!0;h!0

F̂
2

i ðÛ
n
; tn; dt;HÞ ¼ a�D2

i ðÛ
nÞ;
which already shows that the gap-tooth scheme is consistent in this limit. Obtaining an error bound in terms
of n is somewhat more involved. We split F̂

2

i ðÛ
n
; tn; dt;HÞ as follows,
F̂ ðÛn
; tn; dt;HÞ ¼ F̂ 1 þ F̂ 2;
with and F̂ 1 and F̂ 2 defined as:
F̂ 1 ¼ 4D2
i ðÛ

nÞ 1
n

X1
m¼1

ð�1Þmðexpð�a�ð2m� 1Þ2p2nÞ � 1Þ
ð2m� 1Þ3p3

 !
;

F̂ 2 ¼ 4D2
i ðÛ

nÞ 1
n

X1
m¼1

ðam � ð�1ÞmÞðexpð�a�ð2m� 1Þ2p2nÞ � 1Þ
ð2m� 1Þ3p3

 !
�

We have
F̂ 1 � a�D2
i ðÛ

nÞ ¼ 4D2
i ðÛ

nÞ 1
n

X1
m¼1

ð�1Þmðexpð�a�ð2m� 1Þ2p2nÞ � 1Þ
ð2m� 1Þ3p3

 !
� a�D2

i ðÛ
nÞ

¼ 4a�D2
i ðÛ

nÞ
p

X1
m¼1

ð�1Þmþ1 1� expð�a�ð2m� 1Þ2p2nÞ
ð2m� 1Þ3p3n

� p
4

 !
.

For notational convenience, we substitute z = a*p2n, and we proceed with:
F̂ 1 � a�D2
i ðÛ

nÞ
�� �� ¼ 4D2

i ðÛ
nÞa�

p

X1
m¼1

ð�1Þmþ1 1� expð�ð2m� 1Þ2zÞ
ð2m� 1Þ3z

 !
� p

4

�����
����� ð29Þ

6
4a�D2

i ðÛ
nÞ

p
p
4
�
X1
m¼1

ð�1Þmþ1 expð�ð2m� 1Þ2zÞ
2m� 1

 ! !�����
�����

6
4a�D2

i ðÛ
nÞ

p

X1
m¼1

ð�1Þmþ1 1� expð�ð2m� 1Þ2zÞ
2m� 1

 ! !�����
�����

6 Cð1� expð�zÞÞ. ð30Þ
It remains to show the asymptotic behaviour of F̂ 2
kF̂ 2k ¼ 4D2
i ðÛ

nÞ
X1
m¼1

ð�1Þm
sin ð2m�1Þph

2H

� �
2H

ð2m�1Þph � 1
� �

ð2m� 1Þ3p3n
ðexpð�a�ð2m� 1Þ2p2nÞ � 1Þ

������
������

6 C
sinðph

2HÞ 2H
ph � 1

np3

� �
ð1� expð�a�p2nÞÞ 6 C

h2

H 2

1� expð�a�p2nÞ
np3

6 C
h2

dt
ð1� expð�a�p2nÞÞ. ð31Þ
The combination of (30) and (31) proves the theorem. h

Remark that the error bound (30) is quite pessimistic, which is illustrated in Fig. 2. Indeed, as z ! 0, the
error (29) approaches zero much more rapidly than the estimate (30). However, the main behaviour is clear:
by choosing the buffer size H large enough with respect to the time-step dt, one can avoid artefacts being



Fig. 2. Error of the gap-tooth estimator according to Eq. (29) (solid) and the estimate (30) (dashed). Inset: zoom around the origin.
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caused by the boundary conditions. For this problem, we also see that the error approaches a constant as
z ! 1. This is the case where the time-step dt is chosen much too large, such that the problems inside each
box have converged to steady-state due to the Dirichlet boundary conditions.

We illustrate this result numerically.

Example 5. Consider the model problem (20) with a a* = 0.45825686 as a microscopic problem on the
domain [0,1] with homogeneous Dirichlet boundary conditions and initial condition u(x,0) = 1 � 4(x � 1/2)2.
To solve this microscopic problem, we use a second-order finite difference discretization with mesh width
dx = 2 · 10�7 and lsode [18] as time-stepper. The concrete gap-tooth scheme for this example is defined
by the initialization (15). We compare a gap-tooth step with h = 2 · 10�3 and Dx = 1 · 10�1 with the
reference estimator a�D2ðÛ nÞ. Fig. 3 shows the error with respect to the finite difference time derivative as a
function of H (left) and dt (right). It is clear the convergence is in agreement with Theorem 4. The
stagnation for large buffer sizes is due to the finite accuracy of the microscopic solver.

We are now ready to state the general consistency result.

Theorem 6. Let �Unþd ¼ �S2ð �Un
; tn; dt;HÞ be a gap-tooth time-stepper for the homogenization problem (18) and

(19), as defined in (23), and Un+ d = S(Un,tn;dt) a comparison finite difference scheme as defined in (25). Then,
assuming Un ¼ �Un

, we have
k�F 2ð �Un
; tn; dt;HÞ � a�D2ðUnÞk 6 C4

�ffiffiffi
h

p
dt|ffl{zffl}

micro-scales

þ C5 1þ h2

dt

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

averaging

1� expð�a�p2 dt

H 2
Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary conditions

. ð32Þ
Proof. This simply follows by combining Theorem 4 with Lemma 2. h

Formula (32) shows themain consistency properties of the gap-tooth estimator. The error decays exponen-
tially as a function of buffer size, but the optimal accuracy of the estimator is limited by the presence of the
microscopic scales. Therefore, we need to make a trade-off to determine an optimal choice for H and dt.
The smaller dt, the smallerH can be used to reach optimal accuracy (and thus the smaller the computational
cost), but smaller dt implies a larger optimal error. This is illustrated in the following numerical example.

Example 7. Consider the model problem (18) with
aðx=�Þ ¼ 1:1þ sinð2px=�Þ; � ¼ 1� 10�5 ð33Þ

as a microscopic problem on the domain [0,1] with homogeneous Dirichlet boundary conditions and initial
condition u(x,0) = 1 � 4(x � 1/2)2. This diffusion coefficient has also been used as a model example in



Fig. 3. Error of the gap-tooth estimator F̂
2ðUn; tn; dt;HÞ (which uses the homogenized problem (20) and (21) inside each box) with

respect to the finite difference time derivative a*D2(Un) on the same mesh. (Left) Error with respect to H for fixed dt. (Right) Error with
respect to dt for fixed H.
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[1,35]. To solve this microscopic problem, we use a second-order finite difference discretization with mesh
width dx = 1 · 10�7 and lsode as time-stepper. The concrete gap-tooth scheme for this example is defined
by the initialization (15). We compare a gap-tooth step with h = 2 · 10�3 and Dx = 1 · 10�1 with the ref-
erence estimator a�D2ð �UnÞ; in which the effective diffusion coefficient is known to be a* = 0.45825686.
Fig. 4 shows the error with respect to the finite difference time derivative as a function of H (left) and dt
(right). It is clear that the convergence is in agreement with Theorem 6. We see that smaller values of dt
result in larger values for the optimal error, but the convergence towards this optimal error is faster.
Fig. 4. Error of the gap-tooth estimator �F ðUn; tn; dt;HÞ (which uses the detailed, homogenization problem (18) and (19) inside each
box) with respect to the finite difference time derivative a*D2(Un) on the same mesh. (Left) Error with respect to H for fixed dt. (Right)
Error with respect to dt with fixed H.
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3.3. Choosing the method parameters

When performing time integration using patch dynamics, one must determine a macroscopic mesh width
Dx, an inner box size h, a buffer box size H and a time step dt. These method parameters need to be chosen
adequately to ensure an accurate result. Since the gap-tooth estimator approximates the time derivative that
would be obtained through a method-of-lines discretization of the macroscopic equation, the macroscopic
mesh width Dx can be determined by macroscopic properties of the solution only, enabling reuse of existing
remeshing techniques for PDEs. The box width h has to be sufficiently large to capture all small scale effects,
but small enough to ensure a good spatial resolution. Here, we just choose h � �. In our simplified setting,
where the microscopic model is also a partial differential equation, we are free to choose dt, which allows us
to illustrate the convergence properties of the method. However, in practical problems, the choice of dt will
be problem-dependent, since it will need to be chosen large enough to deduce reliable information on the
macroscopic time derivative.

Therefore, we focus on determining the buffer width H, assuming that all other parameters have already
been fixed. From Theorem 6, it follows that the desired value of H depends on the effective diffusion coef-
ficient a*, which is unknown. We thus need to resort to a heuristic. Consider the model problem (18) and
(19) inside one box, centered around x0 = 5 · 10�1, with H = 8 · 10�3, and initial condition u0(x) =
1 � 4(x � 1/2)2. The diffusion coefficient is given by (42), see Example 7. Denote the solution of this prob-
lem by �uðx; tÞ, and define
Fig. 5.
(Left)
bound
�F ðx; tÞ ¼ 1

t
Shð�uðx; tÞ � �uðx; 0ÞÞ ¼ 1

t

Z xþh=2

x�h=2

�uðn; tÞ � �uðn; 0Þ
h

dn ð34Þ
with h = 2 · 10�3 and x 2 [(�H + h)/2,(H�h)/2]. Fig. 5(left) shows �F ðx; tÞ for a number of values of t. We
clearly see how the error in the estimator propagates inwards from the boundaries. The same function is
plotted on the right, only now the microscopic model is the reaction–diffusion equation
otu�ðx; tÞ ¼ oxðaðx=�Þoxu�ðx; tÞÞ þ u�ðx; tÞ 1� u�ðx; tÞ
1:2þ sinð2pxÞ

� �
;

u�ð�H=2; tÞ ¼ u0ð�H=2Þ; u�ðH=2; tÞ ¼ u0ðH=2Þ; ð35Þ
again with a(x/�) defined as in (42). In the presence of reaction terms, �F ðx; tÞ is no longer constant in the
internal region. Based on these observations, we propose the following test for the quality of the buffer size,
k�F ð0; dtÞ � �F ð0; ð1� aÞdtÞk < Tr; 0 < a � 1. ð36Þ
The function �F ðx; tÞ as defined in Eq. (34) for a number of values of time, using a buffer size H = 8 · 10�3 and h = 2 · 10�3.
the model diffusion problem (18) and (19). (Right) The reaction–diffusion equation (35). The estimate clearly gets affected by the
ary conditions as time advances.



Fig. 6. Error of the gap-tooth estimator (dashed) and heuristic error estimate (solid) as a function of buffer size for the model equation
(18) with diffusion coefficient (42) for dt = 5 · 10�6 and a = 0.04.
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Fig. 6 shows this heuristic, together with the error, as a function ofH for dt = 5 · 10�6 and a = 0.04. It is
clear that the computed quantity in (36) is proportional to the error for sufficiently large H. However, this
heuristic is far from perfect, since the simulations inside each box can converge to a steady-state due to the
Dirichlet boundary conditions. If this steady-state is reached in a time interval smaller than dt, Eq. (36) will
underestimate the error, resulting in an insufficient buffer size H getting accepted. However, as soon as the
problem-dependent parameters a and Tr have been determined, this heuristic can be used during the sim-
ulation to check whether the currently used buffer size is still sufficient.

3.4. Discussion

3.4.1. Other boundary conditions
In Section 3.2, we studied the convergence of the gap-tooth estimator both analytically and numerically

in the case of Dirichlet boundary conditions. We will now show numerically that the results obtained in that
section do not depend crucially on the type of boundary conditions. Consider again the diffusion problem
(18), with the diffusion coefficient defined as in (42), see also Example 7. We construct the gap-tooth time
derivative estimator �F ðUn; tn; dt;HÞ as outlined in Section 3.1, but now we use no-flux instead of Dirichlet
boundary conditions. In each box, we then solve the following problem:
otu�ðx; tÞ ¼ oxðaðx=�Þoxu�ðx; tÞÞ; oxu�ð�H=2; tÞ ¼ 0; oxu�ðH=2; tÞ ¼ 0. ð37Þ

The concrete gap-tooth scheme that is used, as well as the corresponding finite difference comparison
scheme, are defined by the initialization (15). Fig. 7 shows the error with respect to the finite difference time
derivative a*D2(Un). We see qualitatively the same behaviour as for Dirichlet boundary conditions.

In general, the choice of boundary conditions might influence the required buffer size. In the ideal case,
where the boundary conditions are chosen to correctly mimic the behaviour in the full domain, we can
choose H = h. Then there is no buffer and the computational complexity is, in some sense, optimal. For
reaction–diffusion homogenization problems, this can be achieved by constraining the averaged gradient
around each box edge [35]. In situations where the correct boundary conditions are not known, or prove
impossible to implement, one is forced to resort to the use of buffers.

3.4.2. Microscopic simulators

It is possible that the microscopic model is not a partial differential equation, but some microscopic sim-
ulator, e.g. kinetic Monte-Carlo or molecular dynamics code. In fact, this is the case where we expect our
method to be most useful. In this case, the lifting step, i.e., the construction of box initial conditions,



Fig. 7. Error of the gap-tooth estimator �F ðUn; tn; dt;HÞ (using the microscopic problem (37) with diffusion coefficient (42) in each box)
with respect to the finite difference time derivative a*D2(Un) on the same mesh.
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becomes more involved. In general, the microscopic model will have many more degrees of freedom, the
higher order moments of the evolving distribution. These will quickly become slaved to the governing mo-
ments (the ones where the lifting is conditioned upon), see, e.g. [25,29]. The crucial assumption in Theorem
6 is that the solution in each box evolves according to the macroscopic equation. For a microscopic sim-
ulation, this will usually mean that we need to construct an initial condition in which, for example, a num-
ber of higher order moments are already slaved to the governing moments (so-called mature initial
conditions). To this end, it is possible to perform a constrained simulation before initialization to create
such mature initial conditions [14,21]. If this is not done, the resulting evolution may be far from what
is expected, see [43] for an illustration in the case of a lattice-Boltzmann model.
4. Patch dynamics

Once a good gap-tooth time derivative estimator has been constructed, it can be used as a method-of-
lines spatial discretization in conjunction with any time integration scheme. Consider for concreteness
the forward Euler scheme for (11) (the comparison scheme), given by
Unþ1 ¼ Un þ Dt F ðUn;D1ðUnÞ; . . . ;DdðUnÞ; tnÞ; ð38Þ

which we will abbreviate as
Unþ1 ¼ Un þ DtF ðUn; tnÞ ð39Þ

and the corresponding patch dynamics scheme
�Unþ1 ¼ �Un þ Dt�F dð �Un
; tn; dt;HÞ; ð40Þ
where �F dð �Un
; tn; dt;HÞ is defined as in (17). Theorem 6 establishes the consistency of the gap-tooth estima-

tor. In order to obtain convergence, we also need to show stability. In [9], E and Engquist state that the
heterogeneous multi-scale method is stable if the corresponding comparison scheme is stable, see [9, The-
orem 5.5]. This theorem would also apply to our case. However, due to the assumption that the numerical



Fig. 8. Spectrum of the estimator �F ðUn; tn; dt;HÞ (dashed) for the model equation (18) with diffusion coefficient (42) for H = 2 · 10�3,
4 · 10�3, . . . ,2 · 10�2 and dt = 5 · 10�6, and the eigenvalues (41) of F(Un,tn) (solid).
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approximation satisfies certain boundedness criteria, it may be of little practical value. In our work, we cir-
cumvent some of these difficulties by studying the stability properties of the scheme numerically. This can be
done by computing the eigenvalues of the time derivative estimator as a function of H.

Consider the homogenization diffusion equation (18) with the diffusion coefficient a(x/�) given by (42).
The homogenized equation is given by (20) with a* = 0.45825686. In this case, the time derivative operator
F(Un,tn) in the comparison scheme (38) has eigenvalues
kk ¼ � 4a�

Dx2
sin2ðpkDxÞ; ð41Þ
which, using the forward Euler scheme as time-stepper, results in the stability condition
max
k

j1þ kkDtj 6 1 or
Dt
Dx2

6
1

2
a�.
It can easily be checked that the operator �F ðUn; tn; dt;HÞ is linear, so we can interpret the evaluation of
�F ðUn; tn; dt;HÞ, as a matrix–vector product. We can therefore use any matrix-free linear algebra technique
to compute the eigenvalues of �F ðUn; tn; dt;HÞ, e.g. Arnoldi. We choose to compute �F ðUn; tn; dt;HÞ and
F(Un,tn) on the domain [0,1] with Dirichlet boundary conditions, on a mesh of width Dx = 0.05 and with
an inner box width of h = 2 · 10�3. We choose dt = 5 · 10�6 and compute the eigenvalues of
�F ðUn; tn; dt;HÞ as a function of H. The results are shown in Fig. 8. Two conclusions are apparent: since
the most negative eigenvalue for �F ðUn; tn; dt;HÞ is always smaller in absolute value than the corresponding
eigenvalue of F(Un,tn) the patch dynamics scheme is always stable if the comparison scheme is stable. More-
over, we see that, with increasing buffer size H, the eigenvalues of �F ðUn; tn; dt;HÞ approximate those of
F(Un,tn), which is an indication of consistency.
5. Numerical results

Wewill consider three example systems to illustrate the method. First, we will briefly illustrate the method
on a pure diffusion problem. The second example is a system of two coupled reaction–diffusion equations,
which models CO oxidation on a heterogeneous catalytic surface. Due to the reaction term, the proof of
Theorem 6 is strictly speaking not valid, but nevertheless the conclusions are the same. The third example
is the Kuramoto–Sivashinsky equation. This fourth-order non-linear parabolic equation is widely used,
e.g. in combustion modeling. The patch dynamics scheme with buffers also works in this case, showing that
the method can also be applied when the macroscopic equation is of higher order. All computations were
performed in Python, making use of the SciPy package [22] for scientific computing.
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5.1. Example 1: Diffusion problem

We consider the model problem (18) with
Fig. 9.
in tim
(botto
aðx=�Þ ¼ 1:1þ sinð2px=�Þ; � ¼ 1� 10�5 ð42Þ
as a microscopic problem on the domain [0,1] with homogeneous Dirichlet boundary conditions and initial
condition u(x,0) = 1 � 4(x � 1/2)2. This diffusion coefficient has also been used as a model example in
[1,35]. To solve this microscopic problem, we use a second-order finite difference discretization with mesh
width dx = 1 · 10�7 and lsode as time-stepper. The concrete gap-tooth scheme for this example is defined
by the initialization (15).

In Section 3, we have already shown the consistency of the gap-tooth estimator. The properties for the
macroscopic scheme are chosen to be Dx = 1 · 10�1 and Dt = 1 · 10�3. As gap-tooth parameters, we
choose H = 8 · 10�3, dt = 1 · 10�6 and h = 1 · 10�4. Thus, simulations are performed in only 8% of the
spatial domain, and 0.1% of the time domain.

We perform a gap-tooth simulation using these parameters up to time t = 0.5, which we compare with a
simulation of the effective equation using the finite difference comparison scheme on the same grid. The
results are shown in Fig. 9. We also compare the results of the patch dynamics scheme to a reference solu-
tion of the effective equation, which is obtained using the comparison scheme on a much finer grid
(Dx = 5 · 10�3 and Dt = 1 · 10�6). We see that the solution is well approximated, and that the error of
the patch dynamics scheme with respect to the finite difference comparison scheme is an order of magnitude
smaller than the total error with respect to the reference solution.

5.2. Example 2: A non-linear travelling wave in a heterogeneous excitable medium

Consider the following system of two coupled reaction–diffusion equations,
otuðx; tÞ ¼ o
2
xuðx; tÞ þ

1

d
uðx; tÞð1� uðx; tÞÞ uðx; tÞ � wðx; tÞ þ bðxÞ

aðxÞ

� �
;

otwðx; tÞ ¼ gðuðx; tÞÞ � wðx; tÞ;
ð43Þ
(Left) Snapshots of the solution of the homogenization diffusion equation using the patch dynamics scheme at certain moments
e. (Right) Error with respect to the ‘‘exact’’ solution of the effective equation (top) and a finite difference comparison scheme
m). The total error is dominated by the error of the finite difference scheme.
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with 8

gðuÞ ¼

0; u < 1=3;

1� 6:75uð1� uÞ2; 1=3 6 u < 1;

1; u P 1.

><
>: ð44Þ
This equation models the spatiotemporal dynamics of CO oxidation on microstructured catalysts, which
consist of, say, alternating stripes of two different catalysts, such as platinum, Pt, and palladium, Pd, or
platinum and rhodium, Rh [16,5,40]. The goal is to improve the average reactivity or selectivity by combin-
ing the catalytic activities of the different metals, which are coupled through surface diffusion. In the above
model, u corresponds to the surface concentration of CO, w is a so-called surface reconstruction variable
and g(u) is an experimentally fitted sigmoidal function. Details can be found in [23,4].

In this model a and b and the time-scale ratio parameter d are physical parameters that incorporate the
experimental conditions: partial pressures of O2 and CO in the gas phase, temperature, as well as kinetic
constants for the surface. Here, we will study a domain of length L = 21 with a periodically varying med-
ium: a striped surface that can be thought of as consisting of equal amounts of Pt and Rh, with stripe width
�/2. The medium is then defined by
aðxÞ ¼ 0:84; bðxÞ ¼ �0:025þ 0:725 sinð2px=�Þ; d ¼ 0:025. ð45Þ

This particular choice of parameters is taken from [33], where an effective bifurcation analysis for this
model was presented. For these parameter values, the effective equation, given by (43) and (44) with
aðxÞ ¼ 0:84; bðxÞ ¼ �0:025; d ¼ 0:025; ð46Þ

supports travelling waves. It was shown in [33] that this conclusion remains true for the given heterogeneity.
This was done by computing the effective behaviour as the average of a large number of spatially shifted
realization of the wave. Here, using the gap-tooth scheme, the solution is spatially averaged inside each
box, but the notion of effective behaviour is identical. We choose the small scale parameter � = 1 · 10�4.

The macroscopic comparison scheme for the effective equations (43)–(46) is defined as a standard sec-
ond-order central difference discretization in space on a macroscopic mesh of width Dx = 0.25, combined
with a forward Euler time-stepper. The time-step is chosen as Dt = 1 · 10�2, which ensures stability. The
patch dynamics scheme for the detailed equations (43)–(45) is then obtained by using a gap-tooth estimator
for the time derivative using the initialization (15) with the same forward Euler time-stepper.

5.2.1. Accuracy

We perform a numerical simulation for this model on the domain [0,L] using the patch dynamics scheme.
The gap-tooth parameters are given by h = 5 · 10�4, H = 1.5 · 10�2 and dt = 5 · 10�7. Inside each box, we
used a finite difference approximation in space, with mesh width dx = 1 · 10�6 and lsode as time-stepper.
The initial condition is given by
uðx; 0Þ ¼
1; x 2 ½8; 18�;
0; else;



wðx; 0Þ ¼

0:5� 0:05x; x 6 8;

0:07x� 0:46; 8 < x 6 18;

�0:1xþ 2:6; x > 18.

8><
>:
The results are shown in Fig. 10. We clearly see both the initial transient and the final travelling wave solu-
tion. For comparison purposes, the same computation was performed using the finite difference comparison
scheme for the effective equation. We also computed an ‘‘exact’’ solution for the effective equation using a
much finer grid (Dx = 5 · 10�3 and Dt = 1 · 10�5). Fig. 11 shows the errors of the patch dynamics simulation
with respect to the finite difference simulation of the effective equation and the ‘‘exact’’ solution, respectively.
We clearly see that the patch dynamics scheme is a very good approximation of the finite difference scheme,
and the error with respect to the exact solution is dominated by the error of the finite difference scheme.



Fig. 10. (Left) Solution of Eqs. (43)–(45) using the patch dynamics scheme as a function of space and time. Colors indicate values
(black = 1, white = 0). (Right) Snapshots of the solution at certain moments in time, clearly showing the approach to a travelling wave
solution.

Fig. 11. Error of a patch dynamics simulation for Eqs. (43)–(45) with respect to the ‘‘exact’’ solution of the effective equation (top) and
a finite difference comparison scheme (bottom). The error is dominated by the error of the finite difference scheme.
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5.2.2. Efficiency

Time integration using the patch dynamics scheme is more efficient than a complete simulation using the
microscopic model, since the microscopic model is used only in small portions of the space-time domain
(the patches). An obvious (but not always correct) way to study the efficiency is to compare the size of
the total space-time domain with the size of the patches. In this example, the simulations are only per-
formed in 6% of the spatial domain. Of course, when it is possible to apply physically correct boundary
conditions around the inner box, the buffer boxes are not necessary, and the boxes would only cover
0.2% of the space domain. For reaction–diffusion homogenization problems, we showed that buffer boxes
are not required when we constrain the average gradient at the box boundary [35]. The gain in the spatial
dimension is determined by the separation in spatial scales. It can be large when the macroscopic solution is
smooth (few macroscopic mesh points are needed) and propagation of boundary artefacts is slow (small
buffer box is sufficient). Note that in higher spatial dimensions, this gain can be even more spectacular.

The gain in the temporal dimension can be determined similarly. In the example of Section 5.2, the gap-
tooth step was chosen as dt = 5 · 10�7, whereas for macroscopic time integration, the forward Euler
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scheme was used with Dt = 1 · 10�2. Therefore, in the temporal dimension, we gain a factor of 2 · 105. In
more realistic applications, when the microscopic model is not a partial differential equation, we expect this
gain to be smaller, since additional computational effort will be required to remove the errors that were
introduced during the lifting step, e.g. in the form of constrained simulation [14].

5.3. Example 3: Kuramoto–Sivashinsky equation

In the third example, we will show that the patch dynamics scheme is able to recover fourth-order mac-
roscopic behaviour. To this end, we consider the Kuramoto–Sivashinsky equation
otuðx; tÞ ¼ �mo4xuðx; tÞ � o2xuðx; tÞ � uðx; tÞoxuðx; tÞ; x 2 ½0; 2p� ð47Þ

with periodic boundary conditions. This equation is frequently used in the modelling of combustion and
thin film flow. For the parameter value v = 4/15, it has been shown that the equation supports travelling
wave solutions, see, e.g. [26]. In our computations, the ‘‘microscopic’’ behaviour that will be simulated in-
side the patches is governed by the Kuramoto–Sivashinsky equation, while the finite difference comparison
scheme, that we wish to approximate, is a discretization of the same Kuramoto–Sivashinsky equation on
the coarse grid. Therefore, we are not interested in the coarse-grained, statistical behaviour of this equation,
as it was studied in e.g. [10]. Instead, we consider this example as an ‘‘analysis problem’’, since the micro-
scopic and macroscopic dynamics both satisfy the same Eq. (47), and study whether the patch dynamics
scheme is also consistent when the macroscopic equation is of fourth order.

We note that the approach taken here is not advocated as a good way to solve the Kuramoto–Sivashin-
sky equation. Indeed, due to a lack of scale separation in this model, we do not expect to be able to use very
small patches, and this statement will be quantified below. Nevertheless, we can show that the patch
dynamics time-stepper converges to a finite difference approximation for this equation on the coarse grid.

To obtain the macroscopic comparison scheme, we discretize the second and fourth-order spatial deriv-
atives using second-order central differences, on a macroscopic mesh of width Dx = 0.05p, combined with a
forward Euler time integrator with time-step Dt = 1 · 10�5. This small macroscopic time-step arises due to
the stiffness of the effective equation. We can accelerate timestepping by wrapping a so-called projective inte-

gration method around the forward Euler scheme [13]. This scheme works as follows. First, we perform a
number of forward Euler steps,
Ukþ1;N ¼ Uk;N þ DtF ðUk;N ; tnÞ;

where, for consistency, U0,N = UN, followed by a large extrapolation step
UNþ1 ¼ ðM þ 1ÞUkþ1;N �MUk;N ; M > k.
Here, Uk,N � U(N(M + k + 1)Dt + kDt). The parameters k and M determine the stability region of the
resulting time-stepper. An analysis of these methods is given in [13]. It can be checked that, for this equa-
tion, choosing k = 2 and M = 7 results in a stable time-stepping scheme.

The patch dynamics scheme is constructed by replacing the time derivative F(Uk,N,tn) by a gap-tooth esti-
mator �F 4ð �Uk;N

; tn; dt;HÞ, obtained by the initialization (13), where we choose the order of the Taylor expan-
sion to be d = 4. The coefficient Di

k; k > 0 are determined by the macroscopic comparison scheme. Inside
each box, Eq. (47) is solved, on a mesh of width dx = 1 · 10�5, subject to Dirichlet and no-flux boundary
conditions, using lsode as time-stepper. We fixed the box width h = 1 · 10�3.

5.3.1. Consistency and efficiency

Because of the fourth-order term and the non-linearity, Theorem 6 is not proven. Therefore, we numer-
ically check the consistency of the estimator, by computing the gap-tooth estimator �F 4ð �Uk;N

; tn; dt;HÞ as a
function of H for a range of values for dt, and comparing the resulting estimate with the time derivative of
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the comparison scheme. As an initial condition, we choose u0(x) = sin(2px). The results are shown in
Fig. 12(left). We see qualitatively the same behaviour as in Section 3.2 for diffusion problems. There are
two main differences. First, in this case the convergence is no longer monotonic, which explains the sharp
peaks in the error curves. Also, the scale separation in the Kuramoto–Sivashinsky equation is much smaller
than for the diffusion equation. Since boundary artefacts travel inwards much faster, we need to choose the
buffer sizeH fairly large. Therefore, the gain will be much smaller in space. Indeed, the figure suggests that a
good compromise between accuracy and efficiency would be to choose dt = 4 · 10�9 and H = 3p · 10�2.
Choosing a larger dt could require H to be so large that the regions start to overlap.

For this choice of the parameters, the computations have to be performed in 60% of the spatial domain.
However, for a forward Euler step, we only need to simulate in 1/25,000 of the time-domain. Using the
projective integration scheme therefore gives us a total gain factor of about 80,000 in time. Again, we note
that in real applications, this spectacular gain will partly be compensated by the additional computational
effort that is required to create appropriate initial conditions.

We can draw two main conclusions. The scheme allows to simulate higher order macroscopic equations,
and the gain in the space domain is heavily dependent on the separation of scales in the macroscopic
equation.

5.3.2. Accuracy

We perform a numerical simulation for this model on the domain [0,2p] using the patch dynamics
scheme. The gap-tooth parameters are given by h = 1 · 10�3, H = 3p · 10�2 and dt = 4 · 10�9. Inside each
box, we used a finite difference approximation in space, with mesh width dx = 1 · 10�5 and lsode as time-
stepper. The initial condition is given by
Fig. 12
The fu
condit
uðx; 0Þ ¼
�1; x 2 ½0; 0:8p�;
�1þ 5ðx� 0:8pÞ; x 2 ½0:8p; 1:5p�;
2:5� 7ðx� 1:5pÞ; x 2 ½1:5p; 2p�.

8><
>:
. (Left) Error of the gap-tooth estimator �F ð �U 0;0
; tn; dt;HÞ with respect to the finite difference time derivative F(U0,0,tn). (Right)

nction (34) as a function of x for a number of values of time. We clearly see how the estimate gets affected by the boundary
ions.



Fig. 13. (Left) Solution of Eq. (47) using the patch dynamics scheme as a function of space and time. Colors indicate values (black = 4,
white = �4). (Right) Snapshots of the solution at certain moments in time, clearly showing the approach to a travelling wave solution.

Fig. 14. Error of a patch dynamics simulation for Eq. (47) with respect to the a finite difference comparison scheme for the effective
equation. We see that this error grows monotonic once the travelling wave has been reached, due to a slight difference in propagation
speed.
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The results are shown in Fig. 13. We clearly see both the initial transient and the final travelling wave solu-
tion. For comparison purposes, the same computation was performed using the finite difference comparison
scheme for the effective equation. Fig. 14 shows the errors of the patch dynamics simulation with respect to
the finite difference simulation. We see that during the transient phase the error oscillates somewhat, but
once the travelling wave is steady the error increases linearly, due to a difference in the approximated prop-
agation speed. Note that the error is significantly larger than for example 5.1, due to the fact that the esti-
mator is less accurate, but also because the macroscopic time-step is much smaller, resulting in a larger
number of estimations.
6. Conclusions

We described the patch dynamics scheme for multi-scale problems. This scheme approximates an
unavailable effective equation over macroscopic time and length scales, when only a microscopic evolution
law is given; it only uses appropriately initialized simulations of the microscopic model over small subsets
(patches) of the space-time domain. Because it is often not possible to impose macroscopically inspired
boundary conditions on a microscopic simulation, we propose to use buffer regions around the patches,
which temporarily shield the internal region of the patches from boundary artefacts.
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We analytically derived an error estimate for a model homogenization problem with Dirichlet boundary
conditions. The numerical results show that the algorithm is more widely applicable. We showed the
scheme is capable of giving good approximations for reaction–diffusion systems, as well as for fourth-order
PDEs, such as the Kuramoto–Sivashinsky equation. As such, these results are far more general than those
of [35], which are restricted to reaction–diffusion problems due to the special choice of boundary
conditions.

We emphasize that, although analyzed for homogenization problems, the real advantage for the methods
presented here lies in their applicability for microscopic models that are not PDEs, such as kinetic Monte-
Carlo, or molecular dynamics. Experiments in this direction are currently being pursued actively.
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